2018

(5th Semester)

ECONOMICS

(Honours)

Paper No.: ECO-503 (b)

(Mathematical Economics)

Full Marks: 70
Pass Marks: 45%

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-I

- (a) Distinguish between constrained and unconstrained optimisation.
 - (b) Find the extreme values of the following functions: 3+4=7

(i)
$$y = -3x^2 + 18x + 12$$

(ii)
$$y = \frac{1}{3}x^3 - 3x^2 + 5x + 3$$

2. (a) Find all the first-order and second-order partial derivatives of the following utility function:

 $U = 2x^2 + 4xy + 5y^2$

6

(b) Define 'first-order difference equation'. In a market model

demand
$$(Q_{d:}) = 10 - 2P_t$$

supply $(Q_{s:}) = -5 + 3P_{t-1}$

Find intertemporal equilibrium price and also determine whether you will get stable equilibrium. 2+6=8

UNIT-II

- 3. (a) (i) Define 'pure quadratic equation'. Give example.
 - (ii) Find the solution of the following quadratic equation :

$$ax^2 + bx + c = 0$$
 3+4=7

(b) If α, β are the roots of the equation

$$36x^2 - 13x + 1 = 0$$

show that $\sqrt{\alpha}$, $\sqrt{\beta}$ are the roots of the equation $6x^{2} - 5x + 1 = 0$.

4. (a) Distinguish between 'order' and 'degree' of differential equation with example.

(b) Solve the following differential equation

$$\frac{dy}{dx} + 5y = 8$$

when $y_0 = 3$.

7

7

UNIT-III

- 5. A consumer has an utility function u = Ax^ay^{1-a}, where x and y are goods purchased and his budget constraint is given by P_x · x + P_y · y = B. Find consumer's demand function for x and y and also derive—
 - (a) the own price elasticities;
 - (b) the cross price elasticities;
 - (c) the income elasticities.

6. (a) Consumer's demand function is given by $Q = 100 - 2P + 0.004 P^2$

where Q and P are quantity and price. Calculate elasticity of demand when P = 10.

(b) If $Q = \sqrt{60 - \frac{3}{2}P}$ is the consumer's demand function where Q is quantity and P is price. Find consumer's surplus if price of the commodity is 16.

UNIT-IV

- 7. A firm has the short-run production function $Q = -2L^3 + 16L^2$, where Q is output and L is labour employed.
 - (a) Does the above production function fulfil required restriction on its coefficient?

L9/101

14

7

(4)

- (b) Show that MP = AP when AP attains maximum.
- (c) Find the value of L where total output is maximum. Also derive maximum total product value. 3+5+6=14
- (a) Differentiate between homogeneous and non-homogeneous production function.
 - (b) Show that the production function $Q = f(a, b) = \sqrt{2Hab Aa^2 Bb^2}$

where H, A, B are constants, is Homogeneous of degree 1 and verify Euler's theorem. 3+7=10

UNIT-V

A monopolist discriminates in prices between two markets and the price equations are given by

$$P_1 = 60 - 4Q_1$$

 $P_2 = 42 - 3Q_2$

where, Q_1 and Q_2 are the outputs of first and second markets. The total cost function is given by

$$C = 50 + 120$$

where $Q = Q_1 + Q_2$. Find—

(a) profit maximising output;

- (b) profit maximising prices;
- (c) clasticities of demand of the markets;
- (d) maximum profit.

6+2+4+2=14

10. A radio manufacturer produces x sets per week at a total cost of Σ(x² + 78x + 2500). He is a monopolist and the demand function for his product is x = 600 - P/8, where P is the price per set. Show that maximum net revenue is obtained when 29 sets are produced per week. Also find monopoly price and profit level.
8+3+3=14
