2017

(5th Semester)

ECONOMICS

(Honours)

Paper No.: ECO-503 (b)

(Mathematical Economics)

Full Marks: 70 Pass Marks: 45%

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-I

What do you mean by 'differentiation'?
 Differentiate the following functions w.r. to x:
 3+3+4+4=14

(i)
$$y = \frac{12}{7\sqrt{x}}$$

(ii)
$$y = (10 - x^4)(5x + x^2)$$

(iii)
$$y = \frac{100 - 3x + 2x^2}{x^3 - 10}$$

Define 'difference equation'. In a market model

$$Q_{dt} = a - bP_t; a, b > 0$$

 $Q_{st} = -c + dP_{t-1}; c, d > 0$
 $Q_{dt} = Q_{st}$

obtain the time path P_t and analyse the condition for its convergence. 4+10=14

UNIT-II

- (a) Define 'quadratic equation'. Give examples.
 - (b) Solve the following equations:

(i)
$$10x^2 - 1200 = 10$$

(ii)
$$x^2 - 16x + 63 = 0$$

(iii)
$$9x^2 - 3x - 2 = 0$$

4. Define 'differential equation'. Find the complete solution of the following differential equation: 6+8=14

$$\frac{dy}{dx} + ay = b$$

UNIT-III

5. (a) Define 'total utility' and 'marginal utility'. Find the marginal utility for the following function when the consumer consumes 5 units of commodity x:

$$U = 5x^3 - 40x^2 + 600x + 100$$

(b) A consumer has a utility function
 U = U(Q) = αQ^β; α > 0; 0 < β < 1

Prove that the utility function displays diminishing marginal utility. (4+4)+6=14

- (a) Define 'elasticity of demand'. Establish
 the relationship among Average Revenue
 (AR), Marginal Revenue (MR) and
 Elasticity of Demand (Ep).
 - (b) If consumer's demand function is given by Q = f(P) = √60-2P, where Q is output and P is price, find consumer's surplus when market price is ₹12. (2+6)+6=14

UNIT-IV

7. A producer has the following revenue and cost functions:

$$R = 30Q - Q^2$$

$$C = Q^3 - 15Q^2 + 10Q + 10Q$$

Find—

- (a) profit maximising output;
- (b) maximum profit;
- (c) equilibrium price;
- (d) point elasticity of demand at equilibrium level of output. 5+3+3=14

The Cobb-Douglas production function is given as

$$Q = f(L, K) = AL^{\alpha}K^{\beta}$$

where, L and K are labour and capital and $\alpha + \beta = 1$.

- (a) Find the marginal productivity of labour and capital.
- (b) Prove that the output is subject to constant returns to scale.
 - (c) Prove that the elasticity of substitution of Cobb-Douglas production function is 1. 6+3+5=14

UNIT-V

9. What is 'price discrimination'? A monopolist discriminates prices between two markets 1 and 2 and his average revenue functions are given as

$$AR_1 = P_1 = 55 - 4Q_1$$

 $AR_2 = P_2 = 25 - 3Q_2$

The total cost function is given by $C = 20 - 5Q + 2Q^2$, where $Q = Q_1 + Q_2$.

- (a) Find the profit maximising output to be sold in two markets.
- (b) Show that the market with higher elasticity of demand has lower price and vice-versa. 2+6+6=14

- 10. (a) A producer has his cost function C=2L+5K, where L and K are labour and capital inputs, subject to production function Q=LK. Find the optimum combination of L and K which minimise cost of production when Q = 40.
 - (b) Given the demand and supply functions for Cobweb model:

$$Q_{dt} = 10 - 2P_t$$

$$Q_{st} = -5 + 3P_{t-1}$$

Find intertemporal equilibrium price and also determine whether you will get stable equilibrium. 7+7=14

