2015

(1st Semester)

ECONOMICS

(Honours)

Paper No.: ECO-102

[Quantitative Technique—I (Mathematics)]

Full Marks: 70
Pass Marks: 45%

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-I

- 1. (a) Write the different types of sets.
 - (b) In a group of 800 people, 550 can speak Hindi and 450 can speak English. How many can speak both Hindi and English?

(c) Let

A = { 3, 6, 12, 15, 18, 21 } B = { 4, 8, 12, 16, 20 } C = { 2, 4, 6, 8, 10, 12, 14, 16 }

Find (i) A-B and (ii) C-A.

2+2=4

5

5

- (a) Define function. Briefly explain its application in economics. 2+5=7
 - (b) Solve the following:

31/2+31/2=7

(i)
$$\frac{5}{2}x+3=\frac{21}{2}$$

(ii)
$$2x - (3x - 4) = 3x - 5$$

UNIT-II

- (a) Discuss the axiomatic properties of real number.
 - (b) Perform the indicated operation and find the result in the form of a+ib:

3+3=6

8

6

(i)
$$\frac{2-\sqrt{-25}}{1-\sqrt{-16}}$$

(ii)
$$\frac{3-\sqrt{-16}}{1-\sqrt{9}}$$

- 4. (a) Find the equation of the path traced out by a point P, which remains equidistant from the points A(3, -4) and B(-5, -1).
 - (b) Find the distance between the following pairs of points: 4+4=8

(i) (2, 3), (1, 1)

(ii) (3, -4), (-5, -1)

UNIT-III

- 5. (a) Write four rules of differentation with examples. 3×4=12
 - Suppose you are given a short run total cost function as

$$C = F(Q) = Q^3 - 3Q^2 + 15Q + 27$$

Find AC and MC functions.

2

6. (a) Find maxima and minima values of the following function:

7

$$y = 3x^4 - 10x^3 + 6x^2 + 5$$

(b) The demand function for a commodity is P = 15 - D and the supply function is $P = (0 \cdot 3) D + 2$. Find the consumer's surplus at the equilibrium market price.

7

UNIT-IV

7. (a) If

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$$

compute 2A-3B.

4

(b) Define inverse of a matrix and find the inverse of

8. (a) Prove that

$$\begin{bmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{bmatrix} = 2(a+b+c)^3$$

(b) Solve the equations by Cramer's rule: 8

$$x-2y+3z=1$$

$$3x-y+4z=3$$

$$2x+y-2z=-1$$

UNIT-V

- 9. (a) What are the basic assumptions of linear programming model?
 - (b) Explain the graphical determination of the region of feasible solution.
- 10. (a) Discuss the two theorems of inputoutput analysis. 31/2+31/2=7

(b) The following inter-industry transaction table was constructed for an economy for the year 2000 (in crores):

Industry	1	2	Final Consumption	Total
1	500	1,600	400	2,500
2	1,750	1,600	4,650	8,000
Labour	250	4,800	-	

Prepare the table of input-output coefficients, if the demand for final consumption of industry 1 and 2 changes to 500 and 4850 respectively. Calculate their gross outputs to meet the new demands.

7